Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171368, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438040

RESUMO

Coastal sediments play a central role in regulating the amount of land-derived reactive nitrogen (Nr) entering the ocean, and their importance becomes crucial in vulnerable ecosystems threatened by anthropogenic activities. Sedimentary denitrification has been identified as the main sink of Nr in marine environments, while anaerobic ammonium oxidation with nitrite (anammox) has also been pointed out as a key player in controlling the nitrogen pool in these locations. Collected evidence in the present work indicates that the microbial biota in coastal sediments from Baja California (northwestern Mexico) has the potential to drive anaerobic ammonium oxidation linked to Mn(IV) reduction (manganammox). Unamended sediment showed ammonification, but addition of vernadite (δMnO2 with nano-crystal size ∼15 Å) as terminal electron acceptor fueled simultaneous ammonium oxidation (up to ∼400 µM of ammonium removed) and production of Mn(II) with a ratio ∆[Mn(II)]/∆[NH4+] of 1.8, which is very close to the stoichiometric value of manganammox (1.5). Additional incubations spiked with external ammonium also showed concomitant ammonium oxidation and Mn(II) production, accounting for ∼30 % of the oxidized ammonium. Tracer analysis revealed that the nitrogen loss associated with manganammox was 4.2 ± 0.4 µg 30N2/g-day, which is 17-fold higher than that related to the feammox process (anaerobic ammonium oxidation linked to Fe(III) reduction, 0.24 ± 0.02 µg 30N2/g-day). Taxonomic characterization based on 16S rRNA gene sequencing revealed the existence of several clades belonging to Desulfobacterota as potential microorganisms catalyzing the manganammox process. These findings suggest that manganammox has the potential to be an additional Nr sink in coastal environments, whose contribution to total Nr losses remains to be evaluated.


Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/análise , Anaerobiose , Sedimentos Geológicos/química , Compostos Férricos , Ecossistema , RNA Ribossômico 16S/genética , México , Óxidos , Oxirredução , Desnitrificação
2.
Water Sci Technol ; 89(3): 788-798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358502

RESUMO

Antimony, extensively used in energy applications, poses toxicity and contamination concerns, especially in anaerobic environments where its impact on microbial activity is poorly understood. Emerging remedies, like biochar, show promise in soil and water treatment. This study investigates biochar's influence on methanogenic activity under Sb(V) and Sb(III) stress using anaerobic sludge as inoculum and lactate as the carbon source. Sb(III) and Sb(V) were introduced at varied concentrations (5-80 mg/L), with or without biochar, monitoring changes in biogas production, pH, Sb, and lactate levels over time. Experiments with Sb(V) also involved calculating mass balance and electron distribution. Results showcased the following significant enhancements: biochar notably improved COD removal and biogas production in Sb(III) spiked conditions, up to 5-fold and 2-fold increases, respectively. Sb(III) removal reached up to 99% with biochar, while in high Sb(V) concentrations, biochar reduced the adverse effect on biogas production by 96%. Adsorption capacities favored biomass (60.96 mg Sb(III)/gVSS, and 22.4 mg Sb(V)/gVSS) over biochar (3.33 mg Sb(III)/g, and 1.61 mg Sb(V)/g) for both Sb species. This study underscores biochar's potential to mitigate metalloid impact on methanogenic activity while aiding Sb removal from liquid phase, suggesting promising implications for remediation and methane production enhancement strategies.


Assuntos
Antimônio , Carvão Vegetal , Euryarchaeota , Biocombustíveis , Ácido Láctico , Metano
3.
Biodegradation ; 35(1): 47-70, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37436663

RESUMO

In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.


Assuntos
Compostos de Amônio , Águas Residuárias , Desnitrificação , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia , Elétrons , Oxirredução , Anaerobiose , Reatores Biológicos , Compostos de Amônio/metabolismo , Oxidantes
4.
Chemosphere ; 349: 140933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092166

RESUMO

Anaerobic ammonium oxidation, associated with both iron (Feammox) and manganese (Mnammox) reduction, is a microbial nitrogen (N) removal mechanism recently identified in natural ecosystems. Nevertheless, the spatial distributions of these non-canonical Anammox (NC-Anammox) pathways and their environmental drivers in subtidal coastal sediments are still unknown. Here, we determined the potential NC-Anammox rates and abundance of dissimilatory metal-reducing bacteria (Acidomicrobiaceae A6 and Geobacteraceae) at different horizons (0-20 cm at 5 cm intervals) of subtidal coastal sediments using the 15N isotope-tracing technique and molecular analyses. Sediments were collected across three sectors (inlet, transition, and inner) in a coastal lagoon system (Bahia de San Quintin, Mexico) dominated by seagrass meadows. The positive relationship between 30N2 production rates and dissimilatory Fe and Mn reduction provided evidence for Feammox's and Mnammox's co-occurrence. N loss through NC-Anammox was detected in subtidal sediments, with potential rates of 0.07-0.62 µg N g-1 day-1. NC-Anammox process in vegetated sediments tended to be higher than those in adjacent unvegetated ones. NC-Anammox rates showed a subsurface peak (between 5 and 15 cm) in the vegetated sediments but decreased consistently with depth in the adjacent bare bottoms. Thus, the presence/absence of seagrasses and sediment characteristics, particularly the availability of organic carbon and microbiologically reducible Fe(III) and Mn(IV), affected the abundance of dissimilatory metal-reducing bacteria, which mediated NC-Anammox activity and the associated N removal. An annual loss of 32.31 ± 3.57 t N was estimated to be associated with Feammox and Mnammox within the investigated area, accounting for 2.8-4.7% of the gross total import of reactive N from the ocean into the Bahia de San Quintin. Taken as a whole, this study reveals the distribution patterns and controlling factors of the NC-Anammox pathways along a coastal lagoon system. It improves our understanding of the coupling between N and trace metal cycles in coastal environments.


Assuntos
Compostos de Amônio , Compostos Férricos , Compostos Férricos/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Compostos de Amônio/metabolismo , Ciclo do Nitrogênio , Oxirredução , Nitrogênio/metabolismo , Bactérias/metabolismo
5.
J Environ Manage ; 326(Pt A): 116683, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36370610

RESUMO

Water stress is a current environmental menace mainly driven by over exploitation of aquifers, which is triggering poor water quality with high concentration of minerals in extracted groundwater. Particularly, silica is widespread in natural water supplies due to weathering processes of silicates occurring in contact with water, light, air, and other factors. However, due to groundwater over extraction the concentration of silica has increased during the last years in aquifer reservoirs from Aguascalientes State (México). In this context, it is very important to note that the removal of silica compounds from water is challenging and different methods can be used to avoid embedding problems in different industries. In the present work, the removal of reactive silica from synthetic solutions as well as from real wastewaters from an industrial anodizing process was studied using adsorption and chemical precipitation methods. Twelve commercial materials of different nature were used for adsorption tests, while seven precipitant agents were applied in the precipitation experiments. Adsorption tests were performed in batch systems with constant stirring at 30 °C and at different pH values (7 and 9). Precipitation experiments were carried out in batch systems and the best conditions for silica removal were found using an L9 orthogonal array of the Taguchi method employing molar ratio, pH of wastewater, stirring time and temperature as experimental factors. Adsorption results showed that Ferrolox (Iron (III) hydroxide-base adsorbent) was the most efficient sorbent for reactive silica removal from synthetic solutions and the anodizing wastewater. Also, the reactive silica adsorption was higher at pH 9 as compared to that measured at pH 7 and the adsorbed quantity at pH 9 was 16.22 and 11.25 mg/g for the synthetic solution and anodizing wastewater, respectively. According to molecular simulation, the main interaction between Ferrolox and silica species was related to the formation of hydroxo-complexes and to the interaction of Fe with oxygen of silica species. Additionally, magnesium chloride was the best precipitating reagent for reactive silica achieving up to 87% removal. According to ANOVA analysis of Taguchi method, pH was the most influential factor during the precipitation of reactive silica with a variance value of 81.42, while values lower than 3 were obtained for the rest of parameters. Overall, the present work is reporting for the first time the removal of reactive silica from anodizing wastewaters with promising results that can be implemented at full scale for water reclamation, which may significantly contribute to manage water reservoir in the region sustainably.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Águas Residuárias/análise , Purificação da Água/métodos , Dióxido de Silício/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
6.
J Water Process Eng ; 50: 103337, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36407934

RESUMO

The biotransformation of the SARS-CoV-2 antiviral drugs, ribavirin and tenofovir, was studied in methanogenic bioreactors. The role of iron-rich minerals, recovered from a metallurgic effluent, on the biotransformation process was also assessed. Enrichment of anaerobic sludge with recovered minerals promoted superior removal efficiency for both antivirals (97.4 % and 94.7 % for ribavirin and tenofovir, respectively) as compared to the control bioreactor lacking minerals, which achieved 58.5 % and 37.9 % removal for the same drugs, respectively. Further analysis conducted by liquid chromatography coupled to mass spectroscopy revealed several metabolites derived from the biotransformation of both antivirals. Interestingly, tracer analysis with 13CH4 revealed that anaerobic methane oxidation coupled to Fe(III) reduction occurred in the enriched bioreactor, which was reflected in a lower content of methane in the biogas produced from this system, as compared to the control bioreactor. This treatment proposal is suitable within the circular economy concept, in which recovered metals from an industrial wastewater are applied in bioreactors to create a biocatalyst for promoting the biotransformation of emerging pollutants. This strategy may be appropriate for the anaerobic treatment of wastewaters originated from hospitals, as well as from the pharmaceutical and chemical sectors.

7.
Molecules ; 27(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235196

RESUMO

Nanomaterials (NMs) have been extensively used in several environmental applications; however, their widespread dissemination at full scale is hindered by difficulties keeping them active in engineered systems. Thus, several strategies to immobilize NMs for their environmental utilization have been established and are described in the present review, emphasizing their role in the production of renewable energies, the removal of priority pollutants, as well as greenhouse gases, from industrial streams, by both biological and physicochemical processes. The challenges to optimize the application of immobilized NMs and the relevant research topics to consider in future research are also presented to encourage the scientific community to respond to current needs.


Assuntos
Poluentes Ambientais , Gases de Efeito Estufa , Nanoestruturas , Biodegradação Ambiental
8.
Biodegradation ; 33(3): 255-265, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35477824

RESUMO

Carbon-based materials have been shown to enhance anaerobic digestion processes by promoting direct interspecies electron transfer in methanogenic consortia. However, little is known on their effects during the treatment of complex substrates, such as those derived from protein-rich wastewaters. Here, organic xerogels (OX) are tested, for the first time, as accelerators of the methanogenic activity of an anaerobic consortium treating a synthetic protein-rich wastewater. Three OX with distinct pore size distribution (10 and 1000 nm for OX-10 and OX-1000, respectively) and structural conformation (graphene oxide integration into OX-10-GO polymeric matrix) were synthesized. OX-1000 promoted the highest methane production rate (5.21 mL/g*h, 13.5% increase with respect to the control incubated without OX) among the synthesized OX. Additionally, batch bioreactors amended with OX achieved higher chemical oxygen demand (COD) removal (up to 88%) as compared to the control, which only showed 50% of COD removal. Interestingly, amendment of bioreactors with OX also triggered the production of medium-chain fatty acids, including caprylate and caproate. Moreover, OX decreased the accumulation of ammonium, derived from proteins hydrolysis, partly explained by their adsorption capacities, and probably involving their electron-accepting capacity promoting anaerobic ammonium oxidation. This is the first time that OX were successfully applied as methanogenic accelerators for the anaerobic treatment of synthetic protein-rich wastewater, increasing the methane production rate and COD removal as well as triggering the production of medium chain fatty acids and attenuating the accumulation of ammonium. Therefore, OX are proposed as suitable materials to boost the efficiency of anaerobic systems to treat complex industrial wastewaters.


Assuntos
Compostos de Amônio , Águas Residuárias , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos , Ácidos Graxos , Metano , Esgotos , Eliminação de Resíduos Líquidos
9.
J Environ Manage ; 303: 114162, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861504

RESUMO

The aim of this work was to assess the nitrogen removal from slaughterhouse wastewater in an anaerobic-anoxic-aerobic combined reactor, evaluating the integrated effect of recirculation rate and hydraulic retention time. The recirculation of the liquid phase from the aerobic zone to the anoxic zone was applied to promote the denitrification through the use of endogenous electron donors. Three recirculation rates (R: 0.5, 1 and 2) and three hydraulic retention times (14, 11 and 8 h) were applied. The operation of the reactor was divided into 3 steps (I, II, and III) according to the factors evaluated (recirculation rate and HRT), to achieve operational conditions that would allow satisfactory performance in the different compartments of the reactor. During the experiment the reactor was fed with average total nitrogen (TN) and chemical oxygen demand (COD) of 65 mg L-1 and 580 mg L-1, respectively. The denitrification efficiency (theoretical) and kinetics parameters for COD decay were calculated. The highest performance was verified in the Step III (R = 2) and HRT of 11 h with NH4+ and TN removals of 84% and 65%, respectively. The TN removal efficiency (65%) was considered satisfactory, since the theoretical denitrification efficiency expected for this condition (R = 2) is 67%, without addition of an external carbon source. The lowest nitrification efficiency values were obtained in HRT of 8 h in the Step I and II (R = 0.5 and 1, respectively), indicating that the nitrification time (3 h - aerobic phase) may be the limiting factor in this HRT. The COD removal efficiency was high in all assays (>95%). The values of the kinetic degradation constants of organic matter were close for all recirculation rates, and the highest values were recorded for the HRT of 8 h and R = 1 and R = 2 (-0.48 and -0.43, respectively).


Assuntos
Nitrogênio , Águas Residuárias , Matadouros , Anaerobiose , Animais , Reatores Biológicos , Desnitrificação , Aves Domésticas , Eliminação de Resíduos Líquidos
11.
Sci Total Environ ; 797: 149228, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346385

RESUMO

Wastewaters contaminated with nitrogenous pollutants, derived from anthropogenic activities, have exacerbated our ecosystems sparking environmental problems, such as eutrophication and acidification of water reservoirs, emission of greenhouse gases, death of aquatic organisms, among others. Wastewater treatment facilities (WWTF) combining nitrification and denitrification, and lately partial nitrification coupled to anaerobic ammonium oxidation (anammox), have traditionally been applied for the removal of nitrogen from wastewaters. The present work provides a comprehensive review of the recent biotechnologies developed in which nitrogen-removing processes are relevant for the treatment of both wastewaters and gas emissions. These novel processes include the anammox process with alternative electron acceptors, such as sulfate (sulfammox), ferric iron (feammox), and anodes in microbial electrolysis cells (anodic anammox). New technologies that couple nitrate/nitrite reduction with the oxidation of methane, H2S, volatile methyl siloxanes, and other volatile organic compounds are also described. The potential of these processes for (i) minimizing greenhouse gas emissions from WWTF, (ii) biogas purification, and (iii) air pollution control is critically discussed considering the factors that might trigger N2O release during nitrate/nitrite reduction. Moreover, this review provides a discussion on the main challenges to tackle towards the consolidation of these novel biotechnologies.


Assuntos
Compostos de Amônio , Purificação da Água , Anaerobiose , Reatores Biológicos , Biotecnologia , Desnitrificação , Ecossistema , Nitrogênio , Oxirredução , Águas Residuárias
12.
J Environ Manage ; 293: 112877, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34098353

RESUMO

Anodizing wastewater contains principally phosphate (PO43-) anions according to previous studies, but with the purpose to promote water reuse in this type of industry, a complete characterization of wastewater was made to remove other anions and cations also present in significant concentration. Particularly, the adsorption of sodium (Na+), potassium (K+), fluoride (F-), sulfate (SO42-) and phosphate (PO43-) was studied using different sorbents such as: coconut shell activated carbon, bone char, bituminous coal activated carbon, natural zeolite, silica, anionic and cationic exchange resins, a coated manganese-calcium zeolite, coconut shell activated carbon containing iron and iron hydroxide. All sorbents were characterized using FT-IR spectroscopy, potentiometric titration, nitrogen adsorption isotherms at 77 K, X-ray diffraction and SEM/EDX analysis to study the adsorption mechanism. The adsorption studies were performed in batch systems under constant agitation using both standard solutions of each ion and real anodizing wastewater. Results showed that, in general, the adsorption of all anions and cations is higher when mono-component standard solutions were used, since in the anodizing wastewater all species are competing for the active sites of the adsorbent. Na+ present in anodizing wastewater was efficiently adsorbed on coated manganese-calcium zeolite (20.55 mg/g) and natural zeolite (18.55 mg/g); while K+ was poorly adsorbed on all sorbents (less than 0.20 mg/g). Anions such as F-, SO42- and PO43-, were better adsorbed on the anionic resin (0.17, 45.38 and 2.92 mg/g, respectively), the iron hydroxide (0.14, 7.96 and 2.87 mg/g, respectively) and the bone char (0.34, 8.71 and 0.27 mg/g, respectively). All these results suggest that adsorption is a promising tertiary treatment method to achieve water reuse in the anodizing industry.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Água , Poluentes Químicos da Água/análise
13.
Water Res ; 196: 117056, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774352

RESUMO

The impact of cultural eutrophication on carbon cycling in subtropical reservoirs was assessed using high-resolution measurements of dissolved gas concentration, atmospheric exchange, and uptake/production rates of methane, carbon dioxide, and oxygen. Seasonal measurements were performed in two reservoirs that pertain to the same hydrological basin but are drastically different in terms of allochthonous carbon input. These results were used to feed a mass balance model, from which a large number of overall parameters were determined to explicitly describe the dynamics and spatial attributes of the carbon cycle in the reservoirs. A single graphical representation of each reservoir was created to facilitate an overall appraisal of the carbon cycle. The impact of cultural eutrophication was profound and resulted in a complete redistribution of how the various bioprocesses participated in the methane, carbon dioxide, and oxygen cycles. Among several identified impacts of eutrophication, it was observed that while eutrophication triggered increased methane production, this effect was followed by a similar increase in methane emissions and methanotrophic rates, while gross primary production was depleted.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Monitoramento Ambiental , Eutrofização , Gases de Efeito Estufa/análise , Metano/análise , Oxigênio
15.
Sci Total Environ ; 750: 141677, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182214

RESUMO

Humic substances (HS) constitute a highly transformed fraction of natural organic matter (NOM) with a heterogeneous structure, which is rich in electron-transferring functional moieties. Because of this feature, HS display a versatile reactivity with a diversity of environmentally relevant organic and inorganic compounds either by abiotic or microbial processes. Consequently, extensive research has been conducted related to the potential of HS to drive relevant processes in bio-engineered systems, as well as in the biogeochemical cycling of key elements in natural environments. Nevertheless, the increase in the number of reports examining the relationship between HS and the microorganisms related to the production and consumption of greenhouse gases (GHG), the main drivers of global warming, has just emerged in the last years. In this paper, we discuss the importance of HS, and their analogous redox-active organic molecules (RAOM), on controlling the emission of three of the most relevant GHG due to their tight relationship with microbial activity, their abundance on the Earth's atmosphere, and their important global warming potentials: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The current knowledge gaps concerning the microbial component, on-site occurrence, and environmental constraints affecting these HS-mediated processes are provided. Furthermore, strategies involving the metabolic traits that GHG-consuming/HS-reducing and -oxidizing microbes display for the development of environmental engineered processes are also discussed.

16.
Front Microbiol ; 11: 587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351467

RESUMO

Humic substances are redox-active organic molecules, which play pivotal roles in several biogeochemical cycles due to their electron-transferring capacity involving multiple abiotic and microbial transformations. Based on the redox properties of humic substances, and the metabolic capabilities of microorganisms to reduce and oxidize them, we hypothesized that they could mediate the anaerobic oxidation of methane (AOM) coupled to the reduction of nitrous oxide (N2O) in wetland sediments. This study provides several lines of evidence indicating the coupling between AOM and the reduction of N2O through an extracellular electron transfer mechanism mediated by the redox active functional groups in humic substances (e.g., quinones). We found that the microbiota of a sediment collected from the Sisal wetland (Yucatán Peninsula, southeastern Mexico) was able to reduce N2O (4.6 ± 0.5 µmol N2O g sed. -1 day-1) when reduced humic substances were provided as electron donor in a close stoichiometric relationship. Furthermore, a microbial enrichment derived from the wetland sediment achieved simultaneous 13CH4 oxidation (1.3 ± 0.1 µmol 13CO2 g sed. -1 day-1) and N2O reduction (25.2 ± 0.5 µmol N2O g sed. -1 day-1), which was significantly dependent on the presence of humic substances as an extracellular electron shuttle. Taxonomic characterization based on 16S rRNA gene sequencing revealed Acinetobacter (a É£-proteobacterium), the Rice Cluster I from the Methanocellaceae and an uncultured archaeon from the Methanomicrobiaceae family as the microbes potentially involved in AOM linked to N2O reduction mediated by humic substances. The findings reported here suggest that humic substances might play an important role to prevent the emission of greenhouse gases (CH4 and N2O) from wetland sediments. Further efforts to evaluate the feasibility of this novel mechanism under the natural conditions prevailing in ecosystems must be considered in future studies.

17.
Appl Microbiol Biotechnol ; 104(9): 4059-4069, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32179949

RESUMO

Geobacter sulfurreducens is capable of reducing Pd(II) to Pd(0) using acetate as electron donor; however, the biochemical and genetic mechanisms involved in this process have not been described. In this work, we carried out transcriptome profiling analysis to identify the genes involved in Pd(II) reduction in this bacterium. Our results showed that 252 genes were upregulated while 141 were downregulated during Pd(II) reduction. Among the upregulated genes, 12 were related to energy metabolism and electron transport, 50 were classified as involved in protein synthesis, 42 were associated to regulatory functions and transcription, and 47 have no homologs with known function. RT-qPCR data confirmed upregulation of genes encoding PilA, the structural protein for electrically conductive pili, as well as c-type cytochromes GSU1062, GSU2513, GSU2808, GSU2934, GSU3107, OmcH, OmcM, PpcA, and PpcD under Pd(II)-reducing conditions. ΔpilA and ΔpilR mutant strains showed 20% and 40% decrease in the Pd(II)-reducing capacity, respectively, as compared to the wild type strain, indicating the central role of pili in this process. RT-qPCR data collected during Pd(II) reduction also confirmed downregulation of omcB, omcC, omcZ, and omcS genes, which have been shown to be involved in the reduction of Fe(III) and electrodes. The present study contributes to elucidate the mechanisms involved in Pd(II) reduction by G. sulfurreducens. Graphical Abstract KEY POINTS: • Transcriptome analysis provided evidence on Pd(II) reduction by G. sulfurreducens. • Results indicate that electrically conductive pili is involved in Pd(II) reduction. • G. sulfurreducens was not able to grow under Pd(II)-reducing conditions. • The study contributes to a better understanding of the mechanisms in Pd(II) reduction.


Assuntos
Citocromos/genética , Perfilação da Expressão Gênica , Geobacter/genética , Paládio/metabolismo , Citocromos/classificação , Regulação para Baixo , Transporte de Elétrons/genética , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Oxirredução , Regulação para Cima
18.
Biodegradation ; 31(1-2): 35-45, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32112297

RESUMO

This study describes the effects of graphene oxide (GO) and reduced graphene oxide (rGO) on the acetoclastic, hydrogenotrophic and methylotrophic pathways of methanogenesis by an anaerobic consortium. The results showed that GO negatively affected the hydrogenotrophic and acetoclastic pathways at a concentration of 300 mg/L, causing a decrease of ~ 38% on the maximum specific methanogenic activity (MMA) with respect to the controls lacking GO. However, the presence of rGO (300 mg/L) promoted an improvement of the MMA (> 45%) achieved with all substrates, except for the hydrogenotrophic pathway, which was relatively insensitive to rGO. The presence of either rGO or GO enhanced the methylotrophic pathway and resulted in an increase of the MMA of up to 55%. X-ray photoelectron spectroscopy (XPS) analysis revealed that GO underwent microbial reduction during the incubation period. Electrons derived from substrates oxidation were deviated from methanogenesis towards the reduction of GO, which may explain the MMA decreased observed in the presence of GO. Furthermore, XPS evidence indicated that the extent of GO reduction depended on the metabolic pathway triggered by a given substrate.


Assuntos
Grafite , Biodegradação Ambiental , Oxirredução , Espectroscopia Fotoeletrônica
19.
Sci Total Environ ; 650(Pt 2): 2674-2684, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373050

RESUMO

Key pathways for the anaerobic oxidation of methane (AOM) have remained elusive, particularly in organic rich ecosystems. In this work, the occurrence of AOM driven by humus-catalyzed dissimilatory iron reduction was investigated in sediments from a coastal mangrove swamp. Anoxic sediment incubations supplied with both goethite (α-FeOOH) and leonardite (humic substances (HS)) displayed an average AOM rate of 10.7 ±â€¯0.8 µmol CH4 cm-3 day-1, which was 7 and 3 times faster than that measured in incubations containing only goethite or HS, respectively. Additional incubations performed with 13C-methane displayed Pahokee Peat HS-mediated carbonate precipitation linked to 13CH4 oxidation and ferrihydrite reduction (~1.3 µmol carbonate cm-3 day-1). These results highlight the role of HS on mitigating greenhouse gases released from wetlands, not only by mediating the AOM process, but also by enhancing carbon sequestration as inert minerals (calcite, aragonite and siderite).

20.
Chemosphere ; 211: 709-716, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30099155

RESUMO

Graphene oxide (GO) is an emerging nanomaterial widely used in many manufacturing applications, which is frequently discharged in many industrial effluents eventually reaching biological wastewater treatment systems (WWTS). Anaerobic WWTS are promising technologies for renewable energy production through biogas generation; however, the effects of GO on anaerobic digestion are poorly understood. Thus, it is of paramount relevance to generate more knowledge on these issues to prevent that anaerobic WWTS lose their effectiveness for the removal of pollutants and for biogas production. The aim of this work was to assess the effects of GO on the methanogenic activity of an anaerobic consortium using a particulate biopolymer (starch) and a readily fermentable soluble substrate (glucose) as electron donors. The obtained results revealed that the methanogenic activity of the anaerobic consortium supplemented with starch decreased up to 23-fold in the presence of GO compared to the control incubated in the absence of GO. In contrast, we observed a modest improvement on methane production (>10% compared to the control lacking GO) using 5 mg of GO L-1 in glucose-amended incubations. The decrease in the methanogenic activity is mainly explained by wrapping of starch granules by GO, which caused mass transfer limitation during the incubation. It is suggested that wrapping is driven by electrostatic interactions between negatively charged oxygenated groups in GO and positively charged hydroxyl groups in starch. These results imply that GO could seriously hamper the removal of particulate organic matter, such as starch, as well as methane production in anaerobic WWTS.


Assuntos
Anaerobiose/fisiologia , Grafite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...